Select Topics
Disorders
Cognition and Motivation
Systems Neuroscience
Molecular and Cellular
Neurotechnology

Alzheimer's disease

Alzheimer’s disease and other dementias are neurodegenerative conditions characterized by a progressive loss of some mental functions, such as memory loss and cognitive decline. Through fundamental research on how the brain stores and recalls memory and on the biology of neurodegeneration, Picower researchers are developing crucial insights and working to translate them into potential therapies.

Down Syndrome

Down syndrome is the most common chromosomal disorder diagnosed in the U.S. and the leading cause of developmental disabilities worldwide. Picower research on the disorder includes creating stem cell lines and lab tissues, providing new insights into the molecular and cell biology of the disorder, and studying systems level interventions.

Mood Disorders

Mood disorders including depression and bipolar disorder are complex in how they affect emotion in the brain. Picower researchers investigate many aspects of these disorders including the circuits, regions and neuromodulators that are relevant in how they are manifested differently in disease.

Sleep

Not merely a restorative process, sleep also has a crucial role in learning and memory. Ongoing studies at the Picower Institute are producing new insights into how memory is processed during sleep and dreaming.

Higher Level Cognition

We are not only capable of learning and reasoning about complex information, we can exert volitional control over these processes. Research at the Picower Institute includes studies to understand the cells, circuits and systems that allow for these capabilities and how abnormalities can disrupt them.

Executive Function

People employ executive functions such as attention and planning to achieve goals and act on motivations, aided by learning and memory. Research at the Picower Institute seeks to understand how the complex coordination of cells, circuits and systems works in the brain to enable such functions.

Reward Systems

Learning and motivation are often governed by the experience of reward and the desire to obtain it again. At the same time, some diseases such as addiction hijack this system. Researchers at Picower study these systems to gain insight into the mechanisms of healthy and unhealthy behavior.

Neural Signal Processing

Neurons are electrically active, producing patterns of activity that can be observed to understand their function. By developing advanced techniques to detect and analyze these patterns of electrical signals, Picower Institute scientists can advance the study of how brain circuits, for instance for storing and recalling memory, work.

Activity Sensors

To understand role of neurons and the circuits in which they participate neuroscientists must be able to gather data on a neuron’s electrical activity, such as when they fire, in real-time. Picower scientists are constantly innovating new genetic and chemical sensors, as well as electronic and imaging-based means to track neural activity both in vitro and in vivo and develop sophisticated means to analyze the large volumes of data gathered.

Optogenetics

By engineering cells with light-responsive ion channels, optogenetics allow the activity of cells such as neurons to become controlled by pulses of visible light. The technology is widely used throughout the institute in experiments in which purposeful instigation or suppression of neural activity can reveal important data on the functions of cells, circuits, systems, and behaviors.

Anxiety Disorders

In the brain, neural circuits mediate senses of reward and aversion, memory and behavior. Perturbations in these circuits may result in disease states such as anxiety. By studying the anatomy, function and dynamics of these circuits in regions such as the amygdala, as well as their connections with other regions, Picower scientists are unraveling the bases of these disorders.

Early Life Stress

Early-life or “toxic” stress can significantly affect neural development and behavior. Picower Institute research includes the effects of genetic and environmental adversity in early development and many scientists also closely study the more general question of how experience changes the brain.