Cognition and Motivation

Picower Institute scientists study behaviors and cognitive processes including learning, memory, emotion, reasoning and consciousness. To learn more about these or other areas of inquiry, select them under Research Topics and you'll find relevant Picower people, discoveries and events.

Mark Bear

Picower Professor of Neuroscience
Bear’s lab studies how experience and deprivation modify synaptic connections in the brain. Experience-dependent synaptic plasticity is the physical substrate of memory and sculpts connections during postnatal development to determine the capabilities and limitations of brain functions.

Emery N. Brown

Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience
Brown lab research contributes to understanding the neuroscience of how anesthetics act in the brain to create the states of general anesthesia. Brown has developed signal processing algorithms to solve important data analysis challenges in neuroscience.

Linlin Fan

Investigator in The Picower Institute for Learning and Memory
The goal of the Fan Lab is to decipher the neural codes underlying learning and memory and to identify the physical basis of learning and memory. In this work, the lab innovates and employs all-optical techniques to read out and manipulate neural circuits.

Steven Flavell

Investigator in The Picower Institute for Learning and Memory
Neural operations occur in milliseconds, yet the brain generates behaviors that can last hours. Flavell’s lab studies how neural circuits generate sustained behavioral states, and how physiological and environmental information is integrated into these circuits.

Laura Lewis

Athinoula A. Martinos Associate Professor, Electrical Engineering & Computer Science
Lewis develops multimodal approaches for imaging the human brain, and applies them to study the neural circuitry that controls sleep, and the consequences of sleep for brain function.

Earl K. Miller

Picower Professor of Neuroscience
Miller’s lab studies the neural mechanisms of attention, learning, and memory needed for voluntary, goal-directed behavior. The lab explores prefrontal function by employing a variety of techniques including multiple-electrode neurophysiology, psychophysics, pharmacological manipulations, and computational techniques.

Mriganka Sur

Newton Professor of Neuroscience
The goal of the Sur laboratory is to understand long-term plasticity and short-term dynamics in circuits of the developing and adult cortex, and to utilize this understanding to discover mechanisms underlying disorders of brain development.

Susumu Tonegawa

Picower Professor of Biology and Neuroscience
With cutting-edge neuroscience techniques, the Tonegawa lab unravels the molecular, cellular, and neural circuit mechanisms that underlie learning and memory. Studies bridge basic science and disease models to causally dissect how memory works and breaks down.

Li-Huei Tsai

Picower Professor of Neuroscience
The Tsai lab is interested in elucidating the pathogenic mechanisms underlying neurological disorders that impact learning and memory by taking a multidisciplinary approach to investigate the molecular, cellular, and circuit basis of neurodegenerative disorders.

Brady Weissbourd

Assistant Professor of Biology
Brady Weissbourd uses jellyfish to study nervous system evolution, development, regeneration, and function.

Matthew Wilson

Sherman Fairchild Professor in Neurobiology
Research in the Wilson laboratory focuses on the study of information representation across large populations of neurons in the mammalian nervous system, as well as on the mechanisms that underlie formation and maintenance of distributed memories, and the role of sleep in memory.

Paper: To understand cognition—and its dysfunction—neuroscientists must learn its rhythms

April 17, 2024
Research Findings
Thought emerges and is controlled in the brain via the rhythmically and spatially coordinated activity of millions of neurons, scientists argue in a new article. Understanding cognition and its disorders requires studying it at that level.