Kay Tye

Kay Tye
Assistant Professor of Neuroscience
The Picower Institute for Learning and Memory
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

Office: 46-6263
Phone: 617 324-8133
Email: kaytye@mit.edu
Website: http://tyelab.org

Administrative Assistant
Sarah Halbert
Office: 446-6263
Phone: 617-324-8134
Email: salanah@mit.edu


Motivated behaviors fall into two valences: Seeking pleasure and avoiding pain. The ability to select appropriate behavioral responses to environmental stimuli, such as avoiding a predator or approaching a food source, is critical for survival. Although most animals are capable of learning to assign either positive or negative associations to environmental cues, we are only beginning to understand the underlying neural circuits and the plasticity that mediates the formation, revision or extinction of an associative memory.

How is emotional or motivational significance assigned to environmental cues?

Where do the circuits processing associative information diverge to differentially encode positive and negative valence?

When there are perturbations in the neural circuits mediating reward processing, fear, motivation, memory or inhibitory control, we may observe a number of disease states such as substance abuse, attention-deficit disorder, anxiety and depression. These are among the most prevalent neuro-psychiatric disorders, and show a high rate of co-morbidity with each other, as patients diagnosed with anxiety or mood disorders are approximately twice as likely to develop a substance abuse disorder.

Do perturbations in common neural circuits processing motivation, memory or affective valence underlie this high-rate of co-morbidity? Can emotional states such as increased anxiety alter a given experience and increase the propensity for substance abuse by facilitating long-term changes associated with reward-related learning? If so, what is the mechanism?

The Tye lab employs an interdisciplinary approach including optogenetics, electrophysiology, pharmacology and imaging techniques to find a mechanistic explanation for how emotional and motivational states can influence learning and behavior, in both health and disease. In addition to scientific excellence and integrity, top values of the Tye Laboratory include mentorship, collaboration, innovation and above all, a positive mental attitude.

Short Bio

Kay Tye completed her undergraduate studies at MIT in 2003, majoring in Brain and Cognitive Sciences with a minor in Biology. She went to the University of California at San Francisco for her graduate studies under the mentorship of Patricia Janak to train in in vivo electrophysiology and behavioral neuroscience, and earned her PhD in 2008. Her thesis work was supported by a National Science Foundation Fellowship and was recognized with the Weintraub Award and the Lindsley Prize. She then stayed on for an extra year to complete a collaboration examining learning-induced plasticity using whole-cell patch-clamp recordings in acute slice preparations with Antonello Bonci. She then began her post-doctoral training at Stanford University in 2009 with the support of a National Research Service Award from the National Institute of Health under the mentorship of Karl Deisseroth, where she integrated her existing skill set with imaging and optogenetic techniques to examine the basis of motivated behaviors. She will now be returning to MIT to start her own lab as an assistant professor in Brain and Cognitive Sciences and the Picower Institute of Learning and Memory in January 2012.

  • 2013-2018 NIH Director’s New Innovator Award ($1.5M direct costs over 5 years)
  • 2014-2015 Sloan Research Fellow, Alfred P. Sloan Foundation
  • 2014 TR35, Technology Review’s Top 35 Innovators Under 35
Contact Us

Not readable? Change text. captcha txt

Start typing and press Enter to search